Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.02 vteřin. 
Wireless and mobile UMTS networks simulation using QoS
Zapletal, Lukáš ; Vychodil, Petr (oponent) ; Vymazal, Michal (vedoucí práce)
The thesis is written in English and focuses on IEEE 802.11e standard, containing support for Quality of Service (QoS) and also discusses QoS in the UMTS system. It analyzes the main theoretical pillars of the mechanisms while the practical part deals with simulation of the network models. The 802.11e standard clatifies interconnection among layers on physical level and refers to the access to media DCF, PCF, HCF, EDCA, HCCA, and furthermore, the access category and also differences in the MAC sublayer. It is analysed problems in the transmission of data based on identifiers priority. The structure and format of the framework and techniques of spread spectrum are also discussed. Time limits for delivery of data priority and the requirements for these data can easily be compared in the tables. The area of quality of service is a very complex issue, and the thesis also analyzes the basic parameters such as end-to-end delay, jitter, dropping data, throughput, queue size and value of the MOS. The mechanisms of integrated (RSVP) and differentiated services to ensure QoS are also mentioned. In the case of third-generation UMTS architecture is illustrated a mutual cooperation with the GSM system. Interconnection between networks is evident from the pictures. A special attention is focused on layer model and the RRM functions to ensure QoS. The mechanisms of Handover Control and Admission Control are clarified too. It analyzes different traffic classes, such as Conversational, Streaming, Interactive and Background. The practical part takes place in the software OPNET Modeler programme. The author developed two models with different scenarios for comparison to QoS support. The wireless model explaining the principle of the 802.11e standard includes two wireless network access points and stations, which are monitored by the simulation with different data transmitted loads. For comparison of the results is examined using the difference method HCF in the network with QoS support. The model of the UMTS network includes base stations Node Bs, with the possibility of broadcasting into three sectors. The mobile subscribers moving on a trajectory are to show the principle functions of the Softer Handover. Confrontation between scenarios is represented by using header compression by PDCP and distinguishing the Type of Service. In particular, it is examined the behavior of priority voice and video data streams in both networks. The measured data are demonstrated by graphs and curves of result characteristics. The analysis discusses the differences in the network without the QoS support and with promotion of quality of services. Differences are compared and evaluated by the methodology of QoS. The work also includes problem solving in the design of the UMTS model and simultaneously gives tips and suggestions for overcoming them. The projects in the simulation software are described according to the procedure of execution, but the depth of details is suppressed. Details are not discussed in this work because some level of advanced knowledge of the mechanisms and a certain amount of experience are necessary.
Wireless and mobile UMTS networks simulation using QoS
Zapletal, Lukáš ; Vychodil, Petr (oponent) ; Vymazal, Michal (vedoucí práce)
The thesis is written in English and focuses on IEEE 802.11e standard, containing support for Quality of Service (QoS) and also discusses QoS in the UMTS system. It analyzes the main theoretical pillars of the mechanisms while the practical part deals with simulation of the network models. The 802.11e standard clatifies interconnection among layers on physical level and refers to the access to media DCF, PCF, HCF, EDCA, HCCA, and furthermore, the access category and also differences in the MAC sublayer. It is analysed problems in the transmission of data based on identifiers priority. The structure and format of the framework and techniques of spread spectrum are also discussed. Time limits for delivery of data priority and the requirements for these data can easily be compared in the tables. The area of quality of service is a very complex issue, and the thesis also analyzes the basic parameters such as end-to-end delay, jitter, dropping data, throughput, queue size and value of the MOS. The mechanisms of integrated (RSVP) and differentiated services to ensure QoS are also mentioned. In the case of third-generation UMTS architecture is illustrated a mutual cooperation with the GSM system. Interconnection between networks is evident from the pictures. A special attention is focused on layer model and the RRM functions to ensure QoS. The mechanisms of Handover Control and Admission Control are clarified too. It analyzes different traffic classes, such as Conversational, Streaming, Interactive and Background. The practical part takes place in the software OPNET Modeler programme. The author developed two models with different scenarios for comparison to QoS support. The wireless model explaining the principle of the 802.11e standard includes two wireless network access points and stations, which are monitored by the simulation with different data transmitted loads. For comparison of the results is examined using the difference method HCF in the network with QoS support. The model of the UMTS network includes base stations Node Bs, with the possibility of broadcasting into three sectors. The mobile subscribers moving on a trajectory are to show the principle functions of the Softer Handover. Confrontation between scenarios is represented by using header compression by PDCP and distinguishing the Type of Service. In particular, it is examined the behavior of priority voice and video data streams in both networks. The measured data are demonstrated by graphs and curves of result characteristics. The analysis discusses the differences in the network without the QoS support and with promotion of quality of services. Differences are compared and evaluated by the methodology of QoS. The work also includes problem solving in the design of the UMTS model and simultaneously gives tips and suggestions for overcoming them. The projects in the simulation software are described according to the procedure of execution, but the depth of details is suppressed. Details are not discussed in this work because some level of advanced knowledge of the mechanisms and a certain amount of experience are necessary.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.